3.804 \(\int \frac{A+B x^2}{(e x)^{3/2} \sqrt{a+b x^2}} \, dx\)

Optimal. Leaf size=290 \[ \frac{\left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} (a B+A b) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right ),\frac{1}{2}\right )}{a^{3/4} b^{3/4} e^{3/2} \sqrt{a+b x^2}}-\frac{2 \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} (a B+A b) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right )|\frac{1}{2}\right )}{a^{3/4} b^{3/4} e^{3/2} \sqrt{a+b x^2}}+\frac{2 \sqrt{e x} \sqrt{a+b x^2} (a B+A b)}{a \sqrt{b} e^2 \left (\sqrt{a}+\sqrt{b} x\right )}-\frac{2 A \sqrt{a+b x^2}}{a e \sqrt{e x}} \]

[Out]

(-2*A*Sqrt[a + b*x^2])/(a*e*Sqrt[e*x]) + (2*(A*b + a*B)*Sqrt[e*x]*Sqrt[a + b*x^2])/(a*Sqrt[b]*e^2*(Sqrt[a] + S
qrt[b]*x)) - (2*(A*b + a*B)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticE[2*ArcTan
[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[e])], 1/2])/(a^(3/4)*b^(3/4)*e^(3/2)*Sqrt[a + b*x^2]) + ((A*b + a*B)*(Sqrt[
a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt
[e])], 1/2])/(a^(3/4)*b^(3/4)*e^(3/2)*Sqrt[a + b*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.222748, antiderivative size = 290, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.192, Rules used = {453, 329, 305, 220, 1196} \[ \frac{\left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} (a B+A b) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right )|\frac{1}{2}\right )}{a^{3/4} b^{3/4} e^{3/2} \sqrt{a+b x^2}}-\frac{2 \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} (a B+A b) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right )|\frac{1}{2}\right )}{a^{3/4} b^{3/4} e^{3/2} \sqrt{a+b x^2}}+\frac{2 \sqrt{e x} \sqrt{a+b x^2} (a B+A b)}{a \sqrt{b} e^2 \left (\sqrt{a}+\sqrt{b} x\right )}-\frac{2 A \sqrt{a+b x^2}}{a e \sqrt{e x}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x^2)/((e*x)^(3/2)*Sqrt[a + b*x^2]),x]

[Out]

(-2*A*Sqrt[a + b*x^2])/(a*e*Sqrt[e*x]) + (2*(A*b + a*B)*Sqrt[e*x]*Sqrt[a + b*x^2])/(a*Sqrt[b]*e^2*(Sqrt[a] + S
qrt[b]*x)) - (2*(A*b + a*B)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticE[2*ArcTan
[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[e])], 1/2])/(a^(3/4)*b^(3/4)*e^(3/2)*Sqrt[a + b*x^2]) + ((A*b + a*B)*(Sqrt[
a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt
[e])], 1/2])/(a^(3/4)*b^(3/4)*e^(3/2)*Sqrt[a + b*x^2])

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{A+B x^2}{(e x)^{3/2} \sqrt{a+b x^2}} \, dx &=-\frac{2 A \sqrt{a+b x^2}}{a e \sqrt{e x}}+\frac{(A b+a B) \int \frac{\sqrt{e x}}{\sqrt{a+b x^2}} \, dx}{a e^2}\\ &=-\frac{2 A \sqrt{a+b x^2}}{a e \sqrt{e x}}+\frac{(2 (A b+a B)) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{a+\frac{b x^4}{e^2}}} \, dx,x,\sqrt{e x}\right )}{a e^3}\\ &=-\frac{2 A \sqrt{a+b x^2}}{a e \sqrt{e x}}+\frac{(2 (A b+a B)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+\frac{b x^4}{e^2}}} \, dx,x,\sqrt{e x}\right )}{\sqrt{a} \sqrt{b} e^2}-\frac{(2 (A b+a B)) \operatorname{Subst}\left (\int \frac{1-\frac{\sqrt{b} x^2}{\sqrt{a} e}}{\sqrt{a+\frac{b x^4}{e^2}}} \, dx,x,\sqrt{e x}\right )}{\sqrt{a} \sqrt{b} e^2}\\ &=-\frac{2 A \sqrt{a+b x^2}}{a e \sqrt{e x}}+\frac{2 (A b+a B) \sqrt{e x} \sqrt{a+b x^2}}{a \sqrt{b} e^2 \left (\sqrt{a}+\sqrt{b} x\right )}-\frac{2 (A b+a B) \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right )|\frac{1}{2}\right )}{a^{3/4} b^{3/4} e^{3/2} \sqrt{a+b x^2}}+\frac{(A b+a B) \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right )|\frac{1}{2}\right )}{a^{3/4} b^{3/4} e^{3/2} \sqrt{a+b x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0423765, size = 82, normalized size = 0.28 \[ \frac{x \left (2 x^2 \sqrt{\frac{b x^2}{a}+1} (a B+A b) \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};-\frac{b x^2}{a}\right )-6 A \left (a+b x^2\right )\right )}{3 a (e x)^{3/2} \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^2)/((e*x)^(3/2)*Sqrt[a + b*x^2]),x]

[Out]

(x*(-6*A*(a + b*x^2) + 2*(A*b + a*B)*x^2*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[1/2, 3/4, 7/4, -((b*x^2)/a)]))/
(3*a*(e*x)^(3/2)*Sqrt[a + b*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.017, size = 378, normalized size = 1.3 \begin{align*}{\frac{1}{aeb} \left ( 2\,A\sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{2}\sqrt{{\frac{-bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{-{\frac{bx}{\sqrt{-ab}}}}{\it EllipticE} \left ( \sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}},1/2\,\sqrt{2} \right ) ab-A\sqrt{{ \left ( bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{2}\sqrt{{ \left ( -bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{-{bx{\frac{1}{\sqrt{-ab}}}}}{\it EllipticF} \left ( \sqrt{{ \left ( bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}},{\frac{\sqrt{2}}{2}} \right ) ab+2\,B\sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{2}\sqrt{{\frac{-bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{-{\frac{bx}{\sqrt{-ab}}}}{\it EllipticE} \left ( \sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}},1/2\,\sqrt{2} \right ){a}^{2}-B\sqrt{{ \left ( bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{2}\sqrt{{ \left ( -bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{-{bx{\frac{1}{\sqrt{-ab}}}}}{\it EllipticF} \left ( \sqrt{{ \left ( bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}},{\frac{\sqrt{2}}{2}} \right ){a}^{2}-2\,A{x}^{2}{b}^{2}-2\,Aab \right ){\frac{1}{\sqrt{b{x}^{2}+a}}}{\frac{1}{\sqrt{ex}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)/(e*x)^(3/2)/(b*x^2+a)^(1/2),x)

[Out]

(2*A*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/
2))^(1/2)*EllipticE(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a*b-A*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2
))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticF(((b*x+(-a*b)^(1/
2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a*b+2*B*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/
2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticE(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2
))*a^2-B*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)
^(1/2))^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a^2-2*A*x^2*b^2-2*A*a*b)/(b*x^2+a
)^(1/2)/b/e/(e*x)^(1/2)/a

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B x^{2} + A}{\sqrt{b x^{2} + a} \left (e x\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(e*x)^(3/2)/(b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)/(sqrt(b*x^2 + a)*(e*x)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B x^{2} + A\right )} \sqrt{b x^{2} + a} \sqrt{e x}}{b e^{2} x^{4} + a e^{2} x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(e*x)^(3/2)/(b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral((B*x^2 + A)*sqrt(b*x^2 + a)*sqrt(e*x)/(b*e^2*x^4 + a*e^2*x^2), x)

________________________________________________________________________________________

Sympy [C]  time = 4.85839, size = 97, normalized size = 0.33 \begin{align*} \frac{A \Gamma \left (- \frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{4}, \frac{1}{2} \\ \frac{3}{4} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 \sqrt{a} e^{\frac{3}{2}} \sqrt{x} \Gamma \left (\frac{3}{4}\right )} + \frac{B x^{\frac{3}{2}} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 \sqrt{a} e^{\frac{3}{2}} \Gamma \left (\frac{7}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)/(e*x)**(3/2)/(b*x**2+a)**(1/2),x)

[Out]

A*gamma(-1/4)*hyper((-1/4, 1/2), (3/4,), b*x**2*exp_polar(I*pi)/a)/(2*sqrt(a)*e**(3/2)*sqrt(x)*gamma(3/4)) + B
*x**(3/2)*gamma(3/4)*hyper((1/2, 3/4), (7/4,), b*x**2*exp_polar(I*pi)/a)/(2*sqrt(a)*e**(3/2)*gamma(7/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B x^{2} + A}{\sqrt{b x^{2} + a} \left (e x\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(e*x)^(3/2)/(b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)/(sqrt(b*x^2 + a)*(e*x)^(3/2)), x)